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Transient Analysis of Multiple-Tuned
Injection-Locked Amplifiers with
Modulated Input Signal

ENRICO F. CALANDRA, MEMBER, IEEE, AND ANTONINO M. SOMMARIVA

Abstract — A method for the dynamical investigation of reflection-type
injection-locked amplifiers (ILA’s) driven by modulated input signals is
presented. Its distinctive feature is to cover the large-signal analysis of
high-order TLA’s, which allows the exploitation of broad-banding multires-
ohant structures. Small-parameter, stroboscopic, and congruence algebra
techniques are combined in order to permit the calculation of output
voltage transients directly in terms of amplitude and phase of the complex
envelope, thus limiting the computational time required in CAD applica-
tions. Further, owing to the employed black-box (scattering matrix) de-
scription of the tank and coupling two-port, both linear and nonlinear
subsystem identification can be performed in terms of measured data. As
an example of the application of the method, a fourth-order ILA is
analyzed, and results pertaining to BPSK modulated input signals are
presented.

I. INTRODUCTION

NJECTION synchronization of solid-state microwave

oscillators received considerable attention in the last
decades, from both experimental and theoretical points of
view [1]-[5], [9]-[20]. In particular, an established applica-
tion of this technique is the high-power amplification of
low-phase-noise monochromatic or modulated signals at
high microwave and millimeter-wave frequencies. :

The design and optimization of such systems require
having at one’s disposal efficient and reliable analysis tools
capable of predicting the dynamical behavior of the injec-
tion-locked amplifier (ILA) in response to a stationary or
modulated sinusoidal input signal. In this connection,
however, it is to be noted that adequate theories are
available in the literature (for both low- and high-level
injection) only in case of single-tuned circuits [6]-[14]. In
fact, the investigation of multiple-tuned systems has been
so far attacked [15]-[18] by resorting to a first-order ex-
pansion of the dynamic immittance introduced by
Kurokawa in [15], which was subsequently acknowledged
by the same author to become a poor approximation when
large-signal operation is involved [19]. On the other hand,
the use of the unabridged expression of the dynamic
immittance is not satisfactory either, as already shown in
[20] with reference to the locking stability investigation.
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This intrinsic inadequacy of the dynamic immittance ap-
proach can be explained by considering that it rests on a
perturbed frequency concept which leads to modeling any
high-order system by means of a pair of differential equa-
tions in the first derivatives of the oscillation complex
envelope components, thus improperly reducing the num-
ber of degrees of freedom.

In this paper, a method is presented which, overcoming
the aforementioned limitation, allows the large-signal anal-
ysis of the steady-state and transient behavior of high-order
ILA’s driven by amplitude and /or angle modulated input
signals. The system model consists of a parallel RC non-
linear element connected to the input-output isolation
circulator by means of a linear tank and coupling two-port
which can include multiple-tuned resonators, thus permit-
ting the investigation of broad-banding ladder structures
such as the ones suggested in [15). The proposed approach
involves a two-step procedure. First, by combining small-
parameter and stroboscopic techniques, a pair of differen-
tial equations (both of order one half of the system degree)
in the amplitude and phase of the voltage at the diode
wafer plane is derived (Section II). Then, by applying
polynomial congruence algebra to the scattering-matrix
description of the linear subsystem, the explicit dynamic
transfer relationship which expresses the load voltage com-
plex envelope as a function of input and wafer voltage
phasors (and their derivatives) is obtained (Section III). In
Section IV, the method is applied to determine the general
equations concerning the case of ILA’s with a parabolic
(conductive and susceptive) nonlinearity and a I'-type
double-tuned resonant and coupling two-port. Finally, in
order to show the suitability of the approach devised to
practical CAD applications, some results pertaining to the
computer simulation of the above system response to
BPSK modulated signals are reported in Section V.

II. DIFFERENTIAL EQUATIONS AT DIODE
WAFER PLANE

Since the class of microwave ILA’s considered here
obeys specific constraints for quasi-sinusoidal behavior
under steady-state and transient operation (see below), our
analysis will refer directly to the first harmonic equivalent
circuit shown in Fig. 1. There, the active device is modeled
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Fig. 1. First harmonic equivalent circuit of an injection-locked

amplifier.

through a voltage-dependent admittance of the form
Y, (V) =G,(V)+ juCy(V) (1)

which accounts for both nonlinear conductance and sus-
ceptance effects at the diode wafer plane, and is easily
obtainable through conventional large-signal measurement
techniques [21]. As far as the tank and coupling circuit is
concerned, we assume it to be a linear lumped time-
invariant passive two-port characterized by means of its
scattering matrix (calculated or measured). The input sig-
nal is supposed to be an amplitude- and/or angle-mod-
ulated sinusoid with carrier frequency (w) near the free-
running oscillation one (w,), and is injected through an
input-output isolation circulator. For the sake of simplic-
ity, the circulator is considered lossless and matched, as
well as the source and load terminations, to the normaliza-
tion resistance R,. However, only minor changes to the
treatment are required in order to remove these last as-
sumptions.

The analysis of the output voltage dynamics of the
circuit of Fig. 1 will be developed in two steps:

a) derivation of the differential nonlinear equations in
the complex envelope components V" and ¢ of the
wafer voltage (this section);

b) derivation of the dynamic transfer relationship from
wafer to load voltage (next section).

This two-step approach is proposed since for the class of
circuits considered no general method can be developed
for obtaining a set of differential equations directly in
terms of the load voltage amplitude and phase. Moreover,
in the few particular cases where such equations can be
written, they are very involved and, therefore, hardly man-
ageable with success.

To start with our calculations, the nonlinear steady-state
equation at the wafer plane under CW operation is first
derived. In this connection, it is convenient to separate the
diode admittance Y, (V') into its linear (Y,=G,+ jwC)
and nonlinear (Y, (V) =G, (V)+ joC,(V)) parts, and to
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Fig. 2. Augmented tank and coupling two-port.

include the former in the tank and coupling circuit (see
Fig. 2), introducing the overall wave quantities (a, and b,)
and scattering parameters (S, ) of the linear subsystem:

_ 25101 — (1 + S101)R0Y1
B 24 (1+ SY)RY,
289,

S, =8, =
2o a4 (1+ SR, Y,

285 +(8h +det[S°T)R,Y, @
2 2+ (1+ SY)RyY,

On the strength of the above definitions, we can write

Ee/¥

az=ﬁ

by—Spa;=Spa,

(3)

and
Ve/® Ve'®
a,=(1-R,Y })—— b,=(Q1+R,)Y)——= (4
1 ( 0n)2‘/F0' 1 ( 0n)2RO ()

with latter two being derived from

a, 1—R,Y,

a__ o Vess = (a, + b, YR .
b, 1+R,Y, e/*=(a,+b)/Ro

(5)

By combining (3) and (4) we obtain the nonlinear phasor
equation

[1+ RoY, = Su(1= RoY, )| Ve'* = S, Ee™* (6)

which provides the CW voltage amplitude and phase at the -
diode wafer plane.

With the view of deriving correct dynamic equations, it
is necessary now to perform a narrow-band approximation
of (6) around the free-running oscillation frequency w,,
which avoids the improper doubling of the system degree
and, therefore, the generation of spurious transient modes
[22], [23]. To this end, we first express the scattering
parameters as a ratio of polynomials of the form

K
l_]_
;= =

M
Zm(w2 - wz)m(s{jym + jws/!! .
0

. - )
Zm (w2 - wg) (N, + JwA)

(which can easily be done through formulas provided in
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Appendix 1), and then make use of the frequency trunca-
tions (w? — w})"=[2w,(w—w,)]™ jw= jw, We then
substitute into (6), for the quantities Y, and S, their
abridged counterparts

1y°
Y, =G, (V) + jeC,(V)

M
- Zm(zwo)m(w‘wo)m( lj m+]w )
SI/ -Kl{= OM . (8)
L (20,)" (0= w,)" (&), + jwAT,)
0

We are now in a position to state the analytical conditions
that guarantee quasi-sinusoidal quasi-static behavior under
transient operation. This check is indeed necessary in the
case of high-order systems, because one can rarely infer
such characteristics on the basis of qualitative considera-
tions only. Using the symbology implicitly introduced in
(7). the constraints to be satisfied read

sii,m =45 =0 (9a)
S/
1+ =M« (9b)
Iy
M—m 7
s
202 ——————————l ol — >1
| iy, m+.]woszj m
{m<M} (9c)

2 w2 e ——————IA | >1
’ &, + je,A% '

The first condition corresponds to considering even order
circuits, which implies, in this context, the absence of
aperiodic dc-drifting modes. The second one accounts for
the presence of a low-impedance shunt path for the current
harmonics out of the active element, as needed for the
suppression of voltage harmonics at the wafer plane. The
third constraint extends to higher order systems the high-Q
resonance requirement typical of second-order weakly non-
linear oscillators, by imposing proper scaling of the coeffi-
cients s, AS). In this connection, let us observe that in
the case where analytical expressions for such coefficients
are available, a certain simplification of the calculations
can be achieved by discarding from each s{; J ) and AL) the
terms of magnitude order less than the one implied by (%¢)
(see for instance the example worked out in Section IV).

Owing to the above-stated conditions and to the as-
sumptions on the input signal bandwidth, all port voltages
are accurately described under transient operation by pha-
sors with slowly varying amplitude and phase. This allows
us to obtain the dynamic equations at the wafer plane by
rewriting (6) in the form

[A-5,+(A+35,)R,Y,|Ver* =5,Ee?

(10)

and then replacing in it the operator (w — w, — jd /dt)™
for the quantity (w — w,)™, where the symbolic nth power
of d/dt indicate nth-order time differentiation of the
argument. After expansion, we therefore obtain the com-
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plex relationship

5 (= )" dm(A-5y,) d"(Ve)
" do" dr”

0

m!

M= 1( J " d™(A+5y,) d™(YVer?)

M( J) d"™(51,) dm(EeN)

(11)

It is easily verified that the real and imaginary parts of (11)
can always be solved for the maximum order derivatives of
V(t) and ¢(¢), thus providing a set of differential equa-
tions of the form

aMy. (dMv dM e .
dZM = dl,]t[)l L V, Wl_7'..’¢’t
dM_l(j)

d¥ I 4
ar' "B\ g

t). (12)

V;—dt—m,“w#)

Once the actual input modulation waveforms are specified,
numerical integration of (12) allows straightforward evalu-
ation of amplitude and phase transients at the wafer plane,
which accomplishes the first step of our procedure. As a
final remark, let us notice that equations (12) are also in a
form suitable for deriving the CW locking stability criteria
through conventional linearization techniques [24]. Rele-
vant formulations are provided in Appendix II.

III. WAFER-TO-LOAD DYNAMIC

TRANSFER RELATIONSHIP

To calculate the amplitude and phase transients at the
load plane, we take advantage of the fact that basic circuit
theory ensures (regardless of the topology of the tank
circuit) the existence of a phasor relationship between
wafer, input, and output voltages of the form

Vyeltr=[p(jo)+q(jo)RY,| Ve’ +r(ju)Ee (13)

p(jw), q(jw), and r(jw) being polynomials of the argu-
ment jw. Indeed, the other possible alternative (i.e., calcu-
lating the load voltage complex envelope through the dy-
namic transfer function technique suggested in [17]) is not
practicable, because it makes use of the perturbed fre-
quency concept [15], whose inadequacy has been already
pointed out in the Introduction.

Equation (13) could be obtained after applying a proper
elimination algorithm to the set of equations describing the
linear subnetwork. However, since only a scattering matrix
description of the tank and coupling two-port is assumed
here to be available, i.e., no knowledge of its actual topol-
ogy is required, a different approach will be employed for
the determination of p(jw), ¢(jw), and r(jw). In par-
ticular, use will be made of the algebra of polynomial
congruences [25], which also offers the advantage of a
straightforward computer implementation.
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As a first step, substituting into (13) the relationships
V,e/* =b,R, Vel* = (a;+b;)|R,

RyY,Vel* = (b, —ay)|R, Ee’*=2a,R, (14)
we obtain
=(p-q)a;+(p+q)b +2ra,. (15)
Substituting S;;a, + Si,a, for b, in (15) yields
b= [P_q+S11(P+‘1)]a1+[2’+512(l’+ Q)]az(- 6)
1

By equating (16) with b, = S,,a, + S,,a,, we oblain the set
of equations

(Su"'l)P + (S11“1)q =S5

S12p + 8129 = Sy, —2r (17)
which, solved for p and g, provides
_ (1= 811)(Sy —2r)+ 81,8,
_ (1+S11)(S22——2r)—S12S21 (18)
28, ’

Since p and ¢ are known a priori to be polynomials,
equations (18) imply the following set of congruences:

280(A=spy)r=(A—s1)sp+ 51250 [mod s, ]
2A(A+ sy )r=(A+sy) 59— [mod s5,] (19)

which, being certainly compatible, can be replaced by the
simpler (equivalent) single congruence

2Ar =5y, (20)

Once (20) is solved for r (see Appendix III), from (18) the
polynomials p and ¢ are easily determined. Through a
narrow-banding technique analogous to the one followed
in Section II, the truncated functions p, g, and 7 can then
be calculated. Actually, a more straightforward evaluation
of the latter quantities can be made by using directly in the
congruence procedure outlined above the scattering quan-
tities S, , 5, ,, and A instead of S, , 5;,, and A in (18), (19),
and (20) In this connection, notice that in the rather
common case in which §,=const. it is convenient to
select for 7 the (constant) value 7, = 57, 3,/(24%,), which
minimizes the degree of p and gq.

Under transient operation, substitution of the operator
(w—w,— jd/dt) for (w—w,) in the truncated counter-
part of (13) finally provides the desired dynamic wafer-to-
load transfer relationship:

o (=) d'pdi(Ve?)
Viel =1, n! de"  dt"

0
Q (—j)" dg d"(Y,ye?)
n! do" dat"

S12571

[mod s, ].

+ R,
0

( J) d'r d" (Ee"l‘)
do" dar"

(21)

R
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0
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Fig. 3. T-type double-tuned tank and coupling circuit.

The above equation allows direct evaluation of the output
voltage phasor in terms of the (known) input and of the
(already calculated) wafer envelope components and their
derivatives.

IV. T-TypeE DOUBLE-TUNED OSCILLATOR

In order to illustrate the use of the method previously
developed. we analyze here an injection-locked amplifier
equipped with the (fourth-order, M =2) tank and cou-
pling circuit shown in Fig. 3. This ladder structure has
been chosen both because it is the simplest one that enjoys
the broad-banding properties discussed in [15] and because
it does not lend itself to treatment by the other theories
available in the literature.

For the sake of simplicity, we assume the nonlinear part
of the diode admittance to be a quadratic function of the
form

Yn = (GnZ + ijnZ) Vz (GnZ > 0) (22)

and the two resonators to be synchronously tuned under
free-running oscillation conditions (V'=V,, w = w,)

L'C'=L(C+C+C,uV2) =1/} (23)
which implies
1+RG
R N (24)
RG»
After introducing
RG Ro
vE TRl Q= w,L
w,L’ 1
g 2 - 25
=%, “orTL(C+C) 23)

application of conversion formulas (A3) to the scattering
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parameters of the augmented coupling two-port furnishes

_ _ 2
{1 0= _r L3¢ ! 1 %
10~ 5o 11,0 0’ Py
o or
1 . w2 Y
s? = — — —— . ————
R AT
1 2 y+1
s = ——_
=lae o
-1
S{1 0= —5 75"
1.2 e,
-2
7 — ! —
S120= %2107 00’
-2
$1=8511= 3
' T w00
— _ 2
[t At o U1
207 5o 22,0 ©.0’ o,
Sl AR
iy =—5|1— — 4+ —
e ( o, Q'

1 w? y—1
s =] ——f —
gmglae e

1
S50 = w22
A’—Y_Z Y 1 1- wg
° 00 e«
A -1 ) W 2-v
r = +
YWl W, QO
-1 wg 1—-vy
1= 3 (402 Q/ Q
, 1
A2= _(;3(‘0—3;. (26)

If we assume, as is reasonable, a small percent hot—cold
detuning of the parallel resonator (i.e., w,, = w,) and high
values for the quality factors @ and Q’, the class defining
conditions (9) are satisfied. A narrow-band approximation
therefore provides the truncated scattering components

2 w? 201 y+1
+|l—l1-= |+ == -—
wo wor wO Q, Q
4 2
((4) wo) _2("" wo)
~ 2
S19 =81 = —
12 21 QQ/
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) y w?
2=~ o\ @

2 ; w2 2_ 1+E
el e _]wo(Q’ Q)

4 )2
. —-— +_— —
(0=w)+ (00,

2 (), 2L 1t
el +J%(Q'— Q)

(0=0)+ = (0-a) (27)
where, as suggested in Section II, only significant terms (of
magnitude order equal to 1/Q*"" for s{,), and A(), in
this case) have been retained, thus avoiding unnecessary
complication of the calculations. Making use of (27) in
(11), after some algebra, we obtain the set of normalized
differential equations

d*x 1 ,| 4X
o ={v—;—3(7-—1)X }g;
d de\*
+{2»+B(X2—1)}X£+X(£)
-1
+{v2+(,8v—y )(Xz—l)}X+%COS(¢—zI/)
d’ 1dx
E;={,B(1—3X2)—2V}XE
d¢ 2 dX d¢
+@“‘“—U 72"—}2:;
1 B
| ==1|r+{(y=Dr+—|[(X*—1)
n 1
- sn(e—v) (28)
in which
Q’ w2 14
g B=Qb‘¢) =
W w, 3 E
D=2Q(w—0—1) T=E‘ét p—-'I7o. (29)

Notice in this connection that to comply with the assump-
tion of a (unique) stable single-mode free-running oscilla-
tion at (¥, w,), the following constraints on v, 1, 8

y>1 41-n)(y-1)"-nB>>0

(30)

must be satisfied.
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Fig. 4. Amplitude (a,¢) and phase (b,d) transients of the output voltage scaled to relevant steady-state values (X19,¢r0)
before input signal switching. 8 =0; 7=0.75; p=—10dB; 7,=3.
(a,b): y=2; v=—0.6(A), —0.3(B), —0.15(C), —0.10(D), O(E) 0.6(F).
(¢,d): y=1.3; »=~0.6(A), —0.3(B), —0.17(C), —0.15(D), O(E), 0.6(F).
Dashed curves 1ndlcate (normalized) amphtuxde and phase evolution of the input signal.

As to the wafer-to-load dynamic transfer relationship,
5,, being a constant, we choose for 7 the optimum value
opt—1/2 thus obtaining p=vy+ j(B—»), g=—1. Use
of such p,g,7 in (21) and proper normalization yields
finally

X, = {k12+k§+[klcos(qb—1p)

12

tkysin(¢—¢)] o+ %}

kysin(¢—¢)—kycos(p—1)
kycos(¢+y)+p/2+k,sin(é—1)

(31)

¢, = zp+tan'1{

where
X
k== ——+[1+ (- (x* -] X
T

ky=

;—?—Fv—%-ﬁ(Xz—l) X (32)

V. NUMERICAL RESULTS FOR BPSK MODULATION

Formulas derived in previous sections will be applied
here to investigate, through computer simulation, the re-
sponse of a T-type ILA to a binary (0°~1180°) phase
shift keying modulated input signal. For brevity, only
results concerning purely resistive nonlinearity (8 = 0) will
be reported here.

In order to better approximate the output waveform of a
real-world BPSK modulator [13], the amplitude and the
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Fig. 5. Type I-type II threshold value of the injection power versus
matching parameter (y) for purely resistive nonlinearity (8 = 0).

phase of the injection signal will be modeled as

0, 7<0
T 7T
¢(7)= _4:5 1—COS;§- s 0<T<2TS
t7, T> 2T,
0, 7<0
0 T
p(rr): 5 14+cos—|, 0<7< 2, (33)
TS
0, T>271,

thus accounting for both a finite phase-switching time (7,)
and an accompanying amplitude dip.

As far as the dynamics of the output waveform are
concerned, behaviors of two (mutually exclusive) types
have been observed when the carrier frequency is swept
throughout the locking bandwidth, depending on the injec-
tion level and parameter values. Type I behavior is charac-
terized by a set of transients (Fig. 4(a) and (b)) with a
nearly constant amplitude and a smooth phase transition
(from 0° to +180° or —180° depending on the carrier
frequency) which becomes slower and slower as the injec-
tion frequency approaches a critical value, at which no
phase reversal occurs. Type II behavior, instead, is charac-
terized by a set of transients (Fig. 4(c) and (d)) with an
ever-increasing dip in the amplitude and a steeper and
steeper phase transition as the carrier frequency ap-
proaches the critical value, at which the voltage phasor
vanishes, thus causing an abrupt 180° phase jump. Com-
puted results indicate that the system behavior changes
from type I to type II when the injection signal amplitude
exceeds a threshold value, which monotonically increases
with vy (see Fig. 5) and is independent of other circuit
parameters.

The consequences of the above characteristics on the
system performance as amplifier for BPSK modulated
signals can be better illustrated by referring to the maxi-
mum switching time of the output phase (7,), defined as
the maximum time required for the voltage out of a
(balanced mixer) phase detector to cross the zero-threshold
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Fig. 6. Maximum output switching time versus input frequency offset.
B=0: =075 p=-20 dB(A), —10 dB®B); 7.=3. (a) y=20;
(by y=123.

value when both a clockwise and a counterclockwise input
phase transition are considered.

The dependence of 7_on injection frequency and power
is reported in Fig. 6, which clearly evidences that a case-
by-case optimization of operating conditions is required in
order to avoid critical dynamic responses. For instance, in
the case of type I behavior (A, B curves of Fig. 6(a) and A
curve of Fig. 6(b)), improper selection of the injection
frequency with respect to the free-running oscillation one
may cause switching times to be very long and /or markedly
dependent on system parameter variations, because of the
peaks appearing in the 7. versus v graphs. In this connec-
tion, observe that the most trivial choice of a synchronous
injection (» = 0) is not satisfactory under small-signal op-
eration (see A curves of Fig. 6). On the other hand,
systems with type Il responses show a nearly constant
switching time within the locking band (e.g. B curve of Fig.
6(b)), and can therefore be optimized taking into consider-
ation other performance indexes, such as the amplitude
ripple.

Finally, as to the variation of 7, with the input phase
switching time 7,, Figs. 7 and 8 evidence that while type II
systems (A curves of Fig. 7 and curves of Fig. 8(b)) exhibit
a smooth increase of 7, with 7,, when type I systems are
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Fig. 7. Maximum output switching time versus input switching time.
B=0; y=13 (A), 2(B); n=025 (————— ), 0.75 —); p=—10dB;
v=0.

concerned (B curves of Fig. 7 and curves of Fig. 8(a)) an
appropriate choice of 7, (with respect to the other system
parameters) has to be made in order to avoid an excessive
increase of system response time.

VI. CONCLUSIONS

A method has been presented for the analysis of the
transient behavior of high-order injection-locked ampli-
fiers driven by modulated sinusoidal input signals which,
in contrast to previous theories, also covers the case of
large-signal injection operation.

The equivalent circuit considered includes an RC non-
linear element, modeling the negative resistance diode, and
a linear lumped two-port described by its scattering ma-
trix, modeling the tank and coupling structure, which
permits the system identification to be performed directly
in terms of measured data. Once ascertained, through a
simple check on overall system parameters, that the basic
constraints for quasi-sinusoidal quasi-static behavior are
met, the two-step analysis procedure developed provides a
pair of Mth-order differential equations in the amplitude
and phase of the voltage at the wafer plane and a dynami-
cal transfer relationship between wafer and load voltage
phasors.

The performed computer simulation of a double-tuned
oscillator driven by binary PSK input signal, showing a
rather complex dependence of the system behavior on
circuit parameters and operating conditions, evidences the
importance of having at one’s disposal accurate analysis
tools for the design and optimization of injection-locked
amplifiers with multiresonant tank and coupling struc-
tures.

APPENDIX |
Any function W(jw) of the form

M-1

M
W(jw) = L Wi + jo ), wiw™
0 0

(A1)

2 0 T T 1

TTTTT Ir T T

T

0 J L 1 Illlll 1 i L1 1111
01 1 (8 10
(@

20 T T T IIIIII T T T TTTT

T, |

10

0 1 1 1 ljllll [l 1 J I |
0.1 1 T, 10

(b)

Fig. 8. Maximum output switching time versus input switching time.
B=0; n=075 p=-10 dB; »=0025(A), 0.1(B), 0.3(C), 0.6(D).
(a): y=12.0; (b): y=13

can be rearranged as

M
L (6= w))" (kp,+ jok;;) (A2)
0
with
S +
=X (T e (m=00 M)
0
M—-—m-1
k= L. (" e (m=0,0, M=1).
0
(A3)
Indeed, letting
W(jo) =W () + joW(«?) (A4)
from (A2), by differentiation, we have
1 d"w®
Q= (A3)

m! d(w2)m e
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while, from (A1), it is easily recognized that
amwt)
L - 7. (A6)
d( wz) 0= 0

Substitution of (A6) into (AS) demonstrates the assertion.

APPENDIX II

In order to evaluate the dynamical stability of the en-
trained oscillation, we linearize (12) in the neighborhoods
of the equilibrium point (V,y, ¢,) setting there

V=V, +AV-eM b=+ Ap-e™

Resorting to matrix notation, we have therefore

(A7)

M—1 M-1 g
Lo g ||
Xm eq Y eq ' P
M-1 gg M-1 gg
_— e m m A
ZO’" ax,, X Zm Vm ¢
eq <q
(A8)

where, for conciseness, the following symbols have been
introduced:

amv
Xm = dr™ Im=

dnl¢
dt™

(A9)

and the subscript “eq” indicates evaluation at x,=1V,,
Vo= eqp X =Y =0(m=12,---, M —1). From (A8) we
get finally the characteristic equation

}\2M__|: 3f + ag } AZM—I
eq

0xXp—1 Oyar—a
2m-2[ 3 P
-y f L8
M m-—M aym—M

AprPENDIX 111

For the reader’s convenience, some basic properties of
polynomial congruences are reported here.

If a polynomial p,(x) divides the difference of two
other polynomials p,(x) and p,(x) by a factor s(x), i.e.,
if

pl(x)——pz(x)=h(x)-p0(x) (A1)

then p,(x) is said to be congruent to p,(x) modulo p,(x),
which is written as

pi(x) = py(x) (A12)

[mod po(x)].
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Solving a congruence of the form

pi(x)-r(x) = po(x) [mod Po(x)] (A13)
with p (x) assigned polynomials, means to determine the
polynomial sets {7(x)} which “satisfy” (A13) in the sense
specified above. In this connection, let us observe that if
rp(x) is a minimum degree solution (i.e., of degree lesser
than the modulus), the polynomials r(x) = ry(x)+
n(x)py(x) (for any n(x)) will constitute a set of solutions
of (A13). Generally speaking, a congruence may be solv-
able or not. However, as previously pointed out, circuit
theory ensures that the congruences of Section III are
always solvable, of which circumstance account will be
taken in the sequel. Further, only minimum degree solu-
tions will be considered here. In the trivial case where
Po(x) is a zeroth-degree polynomial, an arbitrary constant
value can be chosen for r,. In the general case, a congru-
ence of the form (Al3) can be solved resorting to a
recursive algorithm whose ith cycle consists of the follow-
ing three steps:

1) Replace the ith congruence

0= mod ] (a19
with the equivalent congruence
g-r = giv [mod p{)’)] (A15)

where ¢! is the rest of the division p*/p{".
2) Replace the congruence (A15) with the reduced con-
gruence

pi-rT = — g [mod q{”] (A16)

whose solution (r¢*1) is related to the solution of (A15)
through the relationship

p(l) pUFD 4 q(t)

ri= e (A17)
3) Increment index i to i +1 setting
Pyl = pg?
=gy
Pyl =qf" (A18)

and go back to step 1).

This way, at every cycle the degree of the modulus is
lowered. The procedure stops when the modulus becomes
a first-degree polynomial, viz. when

C,-r'P=C, [mod (Cy+ Cy-x)] with C,=const.

(A19)

from which one obtains /)= C, /C,. Repeated applica-
tion of formula (A17) eventually furnishes r.
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