
826 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 5, MAY 1989

Transient Analysis of Multiple-Tuned
Injection-Locked Amplifiers with

Modulated Input Signal

ENRICO F. CALANDRA, MEMBER, IEEE, AND ANTONINO M. SOMMARIVA

Abstract —A method for the dynamical investigation of reflection-type

injection-locked amplifiers (ILA’s) driven by modulated input signals is

presented. Its distinctive feature is to cover the large-signal analysis of

kigh-order ILA’s, which allowsthe exploitation of broad-bandingmultires-
onant structures. Small-parameter,stroboscopic,and congruence algebra

techniques are combined in order to permit the calculation of output

voltage transients directly in terms of amplitude and phase of the complex

envelope, thus limiting the computational time required in CAD applica-
tions. Further, owing to the employed black-box (scattering matrix) de-
scription of the tank and coupling two-port, both linear and nonlinear
subsystemidentification can be performed in terms of measured data. As
an example of the application of the method, a fourth-order lLA is
analyzed, and results pertahrhrg to BPSK modulated input signals are
presented.

I. INTRODUCTION

I NJECTION synchronization of solid-state microwave

oscillators received considerable attention in the last

decades, from both experimental and theoretical points of

view [1]–[5], [9] –[20]. In particular, an established applica-

tion of this technique is the high-power amplification of

low-phase-noise monochromatic or modulated signals at

high microwave and millimeter-wave frequencies. ‘

The design and optimization of such systems require

having at one’s disposal efficient and reliable analysis tools

capable of predicting the dynamical behavior of the injec-

tion-locked amplifier (ILA) in response to a stationary or

modulated sinusoidal input signal. In this connection,

however, it is to be noted that adequate theories are

available in the literature (for both low- and high-level

injection) only in case of single-tuned circuits [6]–[14]. In

fact, the investigation of multiple-tuned systems has been

so far attacked [15]–[18] by resorting to a first-order ex-

pansion of the dynamic immittance introduced by

Kurokawa in [15], which was subsequently acknowledged

by the same author to become a poor approximation when

large-signal operation is involved [19]. On the other hand,

the use of the unabridged expression of the dynamic

immittance is not satisfactory either, as already shown in

[20] with reference to the locking stability investigation.
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This intrinsic inadequacy of the dynamic imrnittance ap-

proach can be explained by considering that it rests on a

perturbed frequency concept which leads to modeling any

high-order system by means of a pair of differential equa-

tions in the first derivatives of the oscillation complex

envelope components, thus improperly reducing the num-

ber of degrees of freedom.

In this paper, a method is presented which, overcoming

the aforementioned limitation, allows the large-signal anal-

ysis of the steady-state and transient behavior of high-order

ILA’s driven by amplitude and/or angle modulated input

signals. The system model consists of a parallel RC non-

linear element connected to the input–output isolation

circulator by means of a linear tank and coupling two-port

which can include multiple-tuned resonators, thus permit-

ting the investigation of broad-banding ladder structures

such as the ones suggested in [15]. The proposed approach

involves a two-step procedure. First, by combining small-

parameter and stroboscopic techniques, a pair of differen-

tial equations (both of order one half of the system degree)

in the amplitude and phase of the voltage at the diode

wafer plane is derived (Section II). Then, by applying

polynomial congruence algebra to the scattering-matrix

description of the linear subsystem, the explicit dynamic

transfer relationship which expresses the load voltage com-

plex envelope as a function of input and wafer voltage

phasors (and their derivatives) is obtained (Section III). In

Section IV, the method is applied to determine the general

equations concerning the case of ILA’s with a parabolic

(conductive and susceptive) nonlinearity and a I’-type

double-tuned resonant and coupling two-port. Finally, in

order to show the suitability of the approach devised to

practical CAD applications, some results pertaining to the

computer simulation of the above system response to

BPSK modulated signals are reported in Section V.

II. DIFFERENTIAL EQUATIONS AT DIODE

WAFER PLANE

Since the class of microwave ILA’s considered here
obeys specific constraints for quasi-sinusoidal behavior

under steady-state and transient operation (see below), our

analysis will refer directly to the first harmonic equivalent

circuit shown in Fig. 1. There, the active device is modeled
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Fig. 1. First harmonic equivalent circuit of
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Fig, 2. Augmented tank andcoupling two-port.

the former in the tank and coupling circuit (see

Yd(V)=Gd(V) +jGJCd(V)

Fig. 2), introducing theoverall wave quantities (a, and b,)

and scattering parameters (S,]) of the linear subsystem:

an injection-locked 2s:1 – (1 + S:l)ROY[
sl~ =

2+(l+s:1)RoY/

of the form 2s:2
“m

(1)

which accounts for both nonlinear conductance and sus-

ceptance effects at the diode wafer plane, and is easily

obtainable through conventional large-signal measurement

techniques [21]. As far as the tank and coupling circuit is

concerned, we assume it to be a linear lumped time-

invariant passive two-port characterized by means of its

scattering matrix (calculated or measured). The input sig-

nal is supposed to be an amplitude- and/or angle-mod-

ulated sinusoid with carrier frequency (u) near the free-

running oscillation one ( CiJO),and is injected through an

input–output isolation circulator. For the sake of simplic-

it y, the circulator is considered lossless and matched, as

well as the source and load terminations, to the normaliza-

tion resistance R ~. However, only minor changes to the

treatment are required in order to remove these last as-

sumptions.

The analysis of the output voltage dynamics of the

circuit of Fig. 1 will be developed in two steps:

“12 = a21= 2+(1+ S&)ROYl

2SJ2+(S&+det[S0 ])RoYl
S22 =

2+(1+ $fl)RoY[ “
(2)

On the strength of the above definitions, we can write

Eel+’

bl – Sllal = S12a2
‘2= 26

(3)

and

with latter two being derived from

By combining (3) and (4) we obtain the nonlinear phasor

equation

a)

b)

This

derivation of the differential nonlinear equations in [1+ ROY. - S,,(1 - ROY.)] Ve’” = S12Ee’$ (6)

the complex envelope components V and rp of the

wafer voltage (this section);
which provides the CW voltage amplitude and phase at the -

derivation of the dynamic transfer relationship from
diode wafer plane.

With the view of deriving correct dynamic equations, it
wafer to load voltage (next section).

is necessary now to perform a narrow-band approximation

two-step approach is proposed since for the class of of (6) around the free-running oscillation frequency @o,

circuits considered no general method can be developed

for obtaining a set of differential equations directly in

terms of the load voltage amplitude and phase. Moreover,

in the few particular cases where such equations can be

written, they are very involved and, therefore, hardly man-

ageable with success.

- To start with our calculations, the nonlinear steady-state

equation at the wafer plane under CW operation is first

derived. In this connection, it is convenient to separate the

diode admittance Yd(V) into its linear (Yt = ~Gl+ @Cl)

and nonlinear (Y.(V) = G.(V)+ jcXn(V)) parts, and to

which avoids the improper doubling of the system degree

and, therefore, the generation of spurious transient modes

[22], [23]. To this end, we first express the scattering

parameters as a ratio of polynomials of the form

~,, fm(a’- fi?)%’j,m+-hW’;,m)
S,j=:= ‘M

~m(L02- @“(A~+ @’~)

(7)

o

(which can easily be done through formulas provided in
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Appendix I), and then make use of the frequency trunca-

tions (Uz – a~)n + [2UO(U – tiO)]m; jti < juO. We then

substitute into (6), for the quantities Y. and S,,, their

abridged counterparts

~n=Gn(V)+jaoCn(V)

We are now in a position to state the analytical conditions

that guarantee quasi-sinusoidal quasi-static behavior under

transient operation. This check is indeed necessary in the

case of high-order systems, because one can rarely infer

such characteristics on the basis of qualitative considera-

tions only. Using the symbology implicitly introduced in

(7), the constraints to be satisfied read

‘~1, M
l+—

A’M
<<1

2WW2ZL’”
2“viRL”1

(9b)

{m<M} (9C)

The first condition corresponds to considering even order

circuits, which implies, in this context, the absence of

aperiodic de-drifting modes. The second one accounts for

the presence of a low-impedance shunt path for the current

harmonics out of the active element, as needed for the

suppression of voltage harmonics at the wafer plane. The

third constraint extends to higher order systems the high-Q

resonance requirement typical of second-order weakly non-

linear oscillators, by imposing proper scaling of the coeffi-

cients s}J:J~,A(n). In this connection, let us observe that in

the case where analytical expressions for such coefficients

are available, a certain simplification of the calculations

can be achieved by discarding from each s~,”,’mand A(~) the

terms of magnitude order less than the one implied by (9c)

(see for instance the example worked out in Section IV).

Owing to the above-stated conditions and to the as-
sumptions on the input signal bandwidth, all port voltages

are accurately described under transient operation by pha-

sors with slowly varying amplitude and phase. This allows

us to obtain the dynamic equations at the wafer plane by

rewriting (6) in the form

and then replacing in it the operator (o – tiO – jd/dt) ‘z

for the quantity (o – ~O)m, where the symbolic n th power

of d/dt indicate n th-order time differentiation of the

argument. After expansion, we therefore obtain the com-

It is easily verified that the real and imaginary parts of (11)

can always be solved for the maximum order derivatives of

P’(t)and ~(i), thus providing a set of differential equa-

tions of the form

d~V

(

dM-lv dM-l$

—’f — —
dt M

dthf_l ,“””, V; dt~-~ ,’””,4; t
1

d ‘~

-(

dll-lv dM-l@

dlbf ‘g dtM_~ ,“””, ~;

1

dt~-l ~“””,+; t . (12)

Once the actual input modulation waveforms are specified,

numerical integration of (12) allows straightforward evalu-

ation of amplitude and phase transients at the wafer plane,

which accomplishes the first step of our procedure. As a

final remark, let us notice that equations (12) are also in a

form suitable for deriving the CW locking stability criteria

through conventional linearization techniques [24]. Rele-

vant formulations are provided in Appendix II.

III. WAFER-TO-LOAD DYNAMIC

TRANSFER RELATIONSHIP

To calculate the amplitude and phase transients at the

load plane, we take advantage of the fact that basic circuit

theory ensures (regardless of the topology of the tank

circuit) the existence of a phasor relationship between

wafer, input, and output voltages of the form

V~e’4’= [p(ja)+ q(j~)RoYn] Ve’o+r(ju)Ee~* (13)

P( j~), q( jti ), and 7( jo) being polynomials of the argu-
ment jo. Indeed, the other possible alternative (i.e., calcu-

lating the load voltage complex envelope through the dy-

namic transfer function technique suggested in [17]) is not

practicable, because it makes use of the perturbed fre-

quency concept [15], whose inadequacy has been already

pointed out in the Introduction.

Equation (13) could be obtained after applying a proper

elimination algorithm to the set of equations describing the

linear subnetwork. However, since only a scattering matrix

description of the tank and coupling two-port is assumed

here to be available, i.e., no knowledge of its actual topol-

ogy is required, a different approach will be employed for

the determination of p( ju), q( jti), and Y( jo ). In par-

ticular, use will be made of the algebra of polynomial

congruences [25], which also offers the advantage of a

straightforward computer implementation.
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As a first step, substituting into (13) the relationships

2L
VLeJ@L= b R Ve~@ = (al + bl)@~

RoYflVe’+= (bl– al)~ EeJ~= 2CJ2~ (14)

we obtain

b2=(p–q)ul +(p+q)bl+2ra2. (15)

Substituting SIlal + SIza, for bl in (15) yields

b2=[p–q +Sll(p+ q)]al+[2r +S12(p+q)]a2.

(16)

By equating (16) with b,= S,lal + S22a2, we obtain the set

of equations

(S,l+l)p +(sl, -l)q=s,l

S12p + Sl,q = S22 –2r (17)

which, solved for p and q, provides

(1 - S1,)(S,2 -2r) + S,,,S2,
p=

2s1.,

(1+ S,l)(S.,., -2r) - S12S,1
q=

2s,2
(18)

Since p and q are known a priori to be polynomials,

equations (18) imply the following set of congruences:

2A(A –,sll)r - (A –SII)S22+S12S21 [mod Sl,]

2A(A +sll)r = (A+sll)s,z–slzs,l [mod s,,] (19)

which, being certainly compatible, can be replaced by the

simpler (equivalent) single congruence

2Ar - s,, [mod s,,]. (20)

Once (20) is solved for r (see Appendix III), from (18) the

polynomials p and q are easily determined. Through a

narrow-banding technique analogous to the one followed

in Section H, the truncated functions ~, Z, and 7 can then

be calculated. Actually, a more straightforward evaluation

of the latter quantities can be made by using directly in the

congruence procedure outlined above the scattering quan-

tities ~.l, iZJ, and ~ instead of S,J, ~iJ, and A in (18), (19),

and (20). In this connection, notice that in the rather

common case in which .iI, = const. it is convenient to

select for 7 the (constant) value 70Pt= Sjz, ~/(2 A’~), which

minimizes the degree of p and q.

Under transient operation, substitution of the operator

(u – tiO – jd/dt) for (a – tiO) in the truncated counter-

part of (13) finally provides the desired dynamic wafer-to-

load transfer relationship:

V eJ@~c~n (-~)n dnli dn(ve~+)L
o

~ ! d@” dt n

Q (-j)” d“j d“(~nVeZ@)

+Ro~n —— —

o
n! da” dt n

+ in (- j)” d“; dn(Ee’*)— —
da” dt?l “ (21)

o
n!

a
I L’ C’
I
+ II

I
I

I

I

+ o

a’

Fig. 3. r-type double-tuned tank and coupling circuit.

The above equation allows direct evaluation of the output

voltage phasor in terms of the (known) input and of the

(already calculated) wafer envelope components and their

derivatives.

IV. r-TyPE DOUBLE-TUNED OSCILLATOR

In order to illustrate the use of the method previously

developed, we analyze here an injection-locked amplifier

equipped with the (fourth-order, M = 2) tank and cou-

pling circuit shown in Fig. 3. This ladder structure has

been chosen both because it is the simplest one that enjoys

the broad-banding properties discussed in [15] and because

it does not lend itself to treatment by the other theories

available in the literature.

For the sake of simplicity, we assume the nonlinear part

of the diode admittance to be a quadratic function of the

form

Y,= (G., + jaCn2)V2 (Gti, > O) (22)

imd the two resonators to be synchronously tuned under

free-running oscillation conditions (V= VO, u = toO)

L’C’= L(C + Cl + C.,V;) =1/0: (23)

which implies

l+ ROG[
v:=–

RoGn2 “

After introducing

(24)

1
Q,_ y’ ~2 =

0’ L(C+Cl)
(25)

o

application of conversion formulas (A3) to the scattering
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parameters of the augmented coupling two-port furnishes

–1

-( )

u’
—— S;; ,. =

‘;”O - QQ’
l–~

tiOQ ‘ U:r

i -)

a: y
S{l,l =

l- Z.-QQ’

S{;,l =
+[i$-a

–1
S;1,2 = —

~2u2
0 or

(26).
d$.gr

If we assume, as is reasonable, a small percent hot-cold

detuning of the parallel resonator (i.e., tiO, = UO) and high

values for the quality factors Q and Q’, the class defining

conditions (9) are satisfied. A narrow-band approximation

therefore provides the truncated scattering components

.(U-OO)+;(HO)’
0

(27)

where, as suggested in Section II, only significant terms (of

magnitude order equal to l/Q 2– m for s},;j~ and A(m), in

this case) have been retained, thus avoiding unnecessary

complication of the calculations. Making use of (27) in

(11), after some algebra, we obtain the set of normalized

differential equations

d 2X

–(

1

dr2 = )
Y–; –3(Y–1)X2 :

()
+{2V+B(X2–l)}X++X :

+{”’+ (fl”-%l(x-l)}x::cos(”-”)

-{(+-l)V+[(Y-1)’+:I(X2-1)}

in which

(28)

Notice in this connection that to comply with the assump-

tion of a (unique) stable single-mode free-running oscilla-

tion at ( VO,tiO), the following constraints on y, q, ~

2
——

“2= ’21 = QQ’

y>l 4(1–q)(y–1)2–q2&>o (30)

must be satisfied.
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Fig. 4. Amplitude (a, c) and phase (b, d) tramients of the output voltage scaled to relevant steady-state values ( XLO, +LO)

before input signaf switching. /3= O: q = 0.75; p = – 10 dB; ~,= 3.

(a, b): y =2; v = -0.6(A), -0.3(B), -0.15((1), -O.1O(D), O(E), 0.6(F).
(c,d): y = 1.3; u = –0.6(A), – 0.3(B), - 0.171(C), – 0.15(D), O(E), 0.6(F).
Dashed curves indicate (normalized) amplitude and phase evolution of the input signal.

As to the wafer-to-load dynamic transfer relationship,

312 being a constant, we choose for 7 the optimum value

;Opt =1/2, thus obtaining ~ = y + j(~ – v), ij = – 1. Use

of such F, F, 7 in (21) and proper normalization yields

finally

(XL= k:+k:+[k, cos(+ –+)

~ 1/2

+k2sin(@–*)]p+~
)

( klsin(@ –*)-k2cos(@–t)

“=*+tan-’ klcos(@ +~)+p/2+k2sin(@–t) 1

(31)

where

kl=–~+[l+(l –y)(X2-l)]X

[ 1kz= ~+v+/3(X2-1) X. (32)

V. NUMERICAL RESULTS FOR BPSK MODULATION

Formulas derived in previous sections will be applied

here to investigate, through computer simulation, the re-

sponse of a r-type ILA to a binary (0° – t 180°) phase

shift keying modulated input signal. For brevity, only

results concerning purely resistive nonlinearity (~ = O) will

be reported here.

In order to better approximate the output waveform of a

real-world BPSK modulator [13], the amplitude and the
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QdB
11

-lo –

-20 –

-30
1 2 Y3

Fig. 5. Type I–type II threshold vafue of the injection power versus
matching parameter (y) for purely resistive nonlinearity (/3 = O).

phase of the injection signal will be modeled as

I

‘(T)= +%%1 ‘<:

0< T<2T3

*’7> T>2T 5

1

P> 7<0

p(’J)= :
()
l+cos~ , 0< T<2T, (33)

‘r,

P, T>2T s

thus accounting for both a finite phase-switching time (~,)

and an accompanying amplitude dip.

As far as the dynamics of the output waveform are

concerned, behaviors of two (mutually exclusive) types

have been observed when the carrier frequency is swept

throughout the locking bandwidth, depending on the injec-

tion level and parameter values. Type I behavior is charac-

terized by a set of transients (Fig. 4(a) and (b)) with a

nearly constant amplitude and a smooth phase transition

(from 0° to + 180° or – 180° depending on the carrier

frequency) which becomes slower and slower as the injec-

tion frequency approaches a critical value, at which no

phase reversal occurs. Type II behavior, instead, is charac-

terized by a set of transients (Fig. 4(c) and (d)) with an

ever-increasing dip in the amplitude and a steeper and

steeper phase transition as the carrier frequency ap-
proaches the critical value, at which the voltage phasor

vanishes, thus causing an abrupt 180° phase jump. Com-

puted results indicate that the system behavior changes

from type I to type II when the injection signal amplitude

exceeds a threshold value, which monotonically increases
with y (see Fig. 5) and is independent of other circuit

parameters.
The consequences of the above characteristics on the

system performance as amplifier for BPSK modulated

signals can be better illustrated by referring to the maxi-

mum switching time of the output phase (7X), defined as

the maximum time required for the voltage out of a

(balanced mixer) phase detector to cross the zero-threshold

20

$x

10

-0.5 0 v 0.5

(a)

20

$x

10

D L ‘

J“

B

oL-----i
-05 0 v 0.5

(b)

Fig, 6. Maximum output swil thing time versus input frequency offset.

~ =0: T = 0.75; P = -20 dB(A), -10 dB(B): ~~=3. (a) y= 2.o;
(b) y=l.3.

value when both a clockwise and a counterclockwise input

phase transition are considered.

The dependence of rz on injection frequency and power

is reported in Fig. 6, which clearly evidences that a case-

by-case optimization of operating conditions is required in

order to avoid critical dynamic responses. For instance, in

the case of type I behaviclr (A, B curves of Fig. 6(a) and A

curve of Fig. 6(b)), improper selection of the injection

frequency with respect to the free-running oscillation one

may cause switching times to be very long and/or markedly

dependent on system parameter variations, because of the
peaks appearing in the ?Y versus v graphs. In this connec-

tion, observe that the most trivial choice of a synchronous

injection (v = O) is not satisfactory under small-signal op-

eration (see A curves of Fig. 6). On the other hand,

systems with type II responses show a nearly constant

switching time within the locking band (e.g. B curve of Fig.

6(b)), and can therefore be optimized taking into consider-

ation other performance indexes, such as the amplitude

ripple.

Finally, as to the variation of 7X with the input phase

switching time r,, Figs. 7 and 8 evidence that while type II

systems (A curves of Fig. 7 and curves of Fig. 8(b)) exhibit

a smooth increase of TX with ~,, when type 1 systems are
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Fig. 7. Maximum output switching time versus input switching time.

~~j; Y ‘1.3 (A), 2(B); q = 0.25 (-----), 0.75 (—); ~ = -10 dB;

concerned (B curves of Fig. 7 and curves of Fig. 8(a)) an

appropriate choice of ~, (with respect to the other system

parameters) has to be made in order to avoid an excessive

increase of system response time.

VI. CONCLUSIONS

A method has been presented for the analysis of the

transient behavior of high-order injection-locked ampli-

fiers driven by modulated sinusoidal input signals which,

in contrast to previous theories, also covers the case of

large-signal injection operation.

The equivalent circuit considered includes an RC non-

linear element, modeling the negative resistance diode, and

a linear lumped two-port described by its scattering ma-

trix, modeling the tank and coupling structure, which

permits the system identification to be performed directly

in terms of measured data. Once ascertained, through a

simple check on overall system parameters, that the basic

constraints for quasi-sinusoidal quasi-static behavior are

met, the two-step analysis procedure developed provides a

pair of Mth-order differential equations in the amplitude

and phase of the voltage at the wafer plane and a dynamic-

al transfer relationship between wafer and load voltage

phasors.

The performed computer simulation of a double-tuned

oscillator driven by binary PSK input signal, showing a

rather complex dependence of the system behavior on

circuit parameters and operating conditions, evidences the

importance of having at one’s disposal accurate analysis

tools for the design and optimization of injection-locked
amplifiers with multiresonant tank and coupling struc-

tures.

APPENDIX I

Any function W“( ja ) of the form

10

0 I I I I I I I II I i I ,111~

0.1 ‘1 ?7. 10

(a)

20 I I I I I I I I I
I 1 I I I I I 1“

c. _
B

:4

10 –

(-J ~J
0.1 1 ‘t. 10

(b)

Fig. 8. Maximum output switching time versus input switching time.
/3= O; q = 0.75; p = -10 dB; v = 0.025(A), O.I(B), 0.3(C), 0.6(D):

(a): y= 2.0; (b): y=l.3

can be rearranged as

o

with

Indeed, letting

TV(jti) = W’(LJ2)+juW’’(ti2)

from (A2), by differentiation, we have

(A2)

M)

M–l).

(A3)

(A4)

(A5)

o 0
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while, from (Al), it is easily recognized that

Substitution of (A6) into (A5) demonstrates the assertion.

APPENDIX II

In order to evaluate the dynamical stability of the en-

trained oscillation, we linearize (12) in the neighborhoods

of the equilibrium point ( Ve~,+e~) setting there

V= F’&+ AV.e~’ $=@~~+A~.ek’. (A7)

Resorting to matrix notation, we have therefore

where, for conciseness, the following symbols

introduced:

dmV
d.,+

xm=—
dt rn ‘m= dtm

AV

A@

. 0

(A8)

have been

(A9)

and the subscript “eq” indicates evaluation at XO= V&,

yo=%qs ~~=Y~=O(m=122)”.”>M–1). From@s) We

get finally the characteristic equation

[

ag
~zM. ~+_ 1~2M-1

aXM-l ‘yM-l q

2M–2

[

“ L &+#-j

M m

M–1

‘(

af ag af ag
— —

11
Am

~-Mn+l ax. ah-n aYm-*, 8X. ,q

[(

M–1 m (3f 13g af ag
+x. x. ‘—–——

0 ax” aym-n 11

Am= 0.

0 8Ym-n a% .q

(A1O)

APPENDIX III

For the reader’s convenience, some basic properties of

polynomial congruences are reported here.

If a polynomial Po(x) divides the difference of two

other polynomials PI(x) and P2(x) by a factor h ( x), i.e.,

if

Pi(x)–P2(x)=~(x)”Po(x) (All)

then Pi(x) is said to be congruent to P2(x) modulo PO(X),

which is written as

PI(X) ‘p2(-x) [mod po(x)l. (A12)

Solving a congruence of the form

P,(x) ”7(x)=P2(~) [mod PO(X)] (A13)

with pZ (x ) assigned polynomials, means to determine the

polynomial sets {r(x)} which “satisfy” (A13) in the sense

specified above. In this connection, let us observe that if

ro( x ) is a minimum degree solution (i.e., of degree lesser

than the modulus), the polynomials r(x) = ro(x ) +

n (x )po(x) (for any n(x)) will constitute a set of solutions

of (Al 3). Generally speaking, a congruence may be solv-

able or not. However, as previously pointed out, circuit

theory ensures that the congruences of Section 111 are

always solvable, of which circumstance account will be

taken in the sequel. Further, only minimum degree solu-

tions will be considered here. In the trivial case where

PO(X) is a zeroth-degree polynomial, an arbitrary constant
value can be chosen for ro. In the general case, a congru-

ence of the form (Al 3) can be solved resorting to a

recursive algorithm whose i th cycle consists of the follow-

ing three steps:

1) Replace the ith congruence

PI r (r’ [mod #)]([) (~)~ ~u2 (A14)

with the equivalent congruence

“’r”) - q-$” [mod p[’]ql (A15)

(’J is the rest of 1he division p} ’)/p&”.where q,

2) Replace the congruence (A15) with the reduced con-

gruence

p. r“) “+1)= – q$’) [mod q~t] (A16)

whose solution (r” +1) ) is related to the solution of (A15)

through the relationship

(,) (z+l)+q~l)p. r
T(f)=_ (A17)

q}’) “

3) Increment index i to i + 1 setting

“+l)=P$)P]

P!’*+l) = 94’)

“+1) = 41’)Po (A18)

and go back to step 1).

This way, at every cycle the degree of the modulus is

lowered. The procedure stops when the modulus becomes

a first-degree polynomial, viz. when

C,”r’T) = C2 [mod (COO+ Col.x)] with C, , = const.

(A19)

from which one obtains r ‘1) = C? /C,. Repeated applica-

tion

[1]

p]

[3]

of formula (A 17) eventually furnishes r ‘1),
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